
FaScalSQL: A Fast and Scalable GPU-Accelerated
SQL Query Engine for Out-of-Memory Tables

Chaemin Lim∗, Suhyun Lee∗, Jinwoo Choi†, Kwanghyun Park∗, Jinho Lee‡, Joonsung Kim§, Youngsok Kim∗
∗Department of Computer Science and Engineering, Yonsei University, Seoul, South Korea

†Korea Institute of Science and Technology, Seoul, South Korea
‡Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
§Department of Semiconductor Systems Engineering, Sungkyunkwan University, Suwon, South Korea

cmlim@yonsei.ac.kr, su_hyun@yonsei.ac.kr, jinwoo1029@kist.re.kr, kwanghyun.park@yonsei.ac.kr,
leejinho@snu.ac.kr, joonsungkim@skku.edu, youngsok@yonsei.ac.kr

Abstract—Graphics Processing Units (GPUs) are promising
for analytical SQL query processing, but their limited memory
capacity hinders processing large input tables exceeding the GPU
memory. The existing engines either 1) statically split input
columns into chunks and iteratively perform host-to-GPU trans-
fer and relational operations (streaming engines), or 2) maintain
a static and fixed-size cache on GPU memory and distribute
input columns and their query workloads to the host CPU and
a GPU (CPU-GPU distributive engines). However, we find that
they suffer from two primary bottlenecks which eventually lead
the engines to severe GPU underutilization: excessive host-to-
GPU data movement and CPU-GPU load imbalance. We find
that they arise from a conflict between their static input data
placement and the dynamic progressive filtering of analytical
queries. This conflict leads the engines either to transfer column
values that are eventually discarded or to assign a large amount
of the workload to the host CPU as the input table size scales.

In this paper, we present FaScalSQL, a fast and scalable GPU-
accelerated SQL query engine that overcomes the severe GPU
underutilization of query processing on out-of-memory tables.
FaScalSQL introduces a new type of on-demand CPU-GPU co-
processing engine which exploits both GPU-initiated data transfer
and CPU-GPU co-processing capability. It replaces the static
large unfiltered chunks with a dynamic GPU-initiated on-demand
fetching of necessary input data, guided by the host CPU’s pre-
filtering. We evaluate FaScalSQL with Star Schema Benchmark
(SSB) and TPC-H. Using SSB with scale factors of 100 and 200,
FaScalSQL achieves geometric mean speedups of 2.60× and 2.20×
over the existing streaming and CPU-GPU distributive engines.

Index Terms—GPU acceleration, OLAP, out-of-memory tables,
CPU-GPU co-processing, CPU-GPU load imbalance

I. INTRODUCTION

Graphics Processing Units (GPUs) offer much higher com-
putational throughput and memory bandwidth than Central
Processing Units (CPUs) [58], [81]. This makes GPUs promis-
ing for analytical Structured Query Language (SQL) query
processing, which evaluates the relational operations of a SQL
query on multiple input columns and their values [16]. Prior
studies show that GPUs can greatly accelerate analytical SQL
queries by parallelizing the execution of a relational operation
on different input column values across GPU cores [15], [23],
[25], [26], [35], [40], [54], [57], [87], [92], [93], [98], [116].

However, the limited capacity of GPU memory poses a
critical challenge in GPU-accelerated SQL query processing.
The demand for processing large tables is steadily increasing,

for instance, Google and Meta report exponential growth in
their web-scale SQL analytics over the last decade [72], [104].
Meta has recently reported that the size of scanned input tables
increases by nearly 600% over three years [73], [104].

Several GPU-accelerated analytical SQL query engines have
been proposed to handle out-of-memory tables. They can be
categorized into two types: streaming engines and CPU-GPU
distributive engines. Streaming engines statically split input
columns into GPU memory-fit chunks, iteratively performing
the host-to-GPU transfer and executing relational operations
on each chunk in a pipelined manner [17], [37], [51], [68],
[69], [101], [129]. CPU-GPU distributive engines maintain
a static, fixed-size cache on the GPU memory and a GPU
executes relational operations for the column values within
the cache. They rely on the host CPU for executing relational
operations on the column values, which cannot reside in the
GPU memory cache [11], [13], [14], [47], [126].

However, existing engines create two primary bottlenecks
which incur severe GPU underutilization: excessive host-to-
GPU data movement and CPU-GPU load imbalance. We
identify these bottlenecks as arising from conflict between the
engines’ static input data placement and the queries’ dynamic
progressive filtering. For example, statically split chunks in
streaming engines saturate the PCIe bus with values that are
eventually discarded. Similarly, static caching of CPU-GPU
distributive engines compels the host CPU to process a large
share of the workload as data scales. This can be further
exacerbated by host-side contention incurred by co-located
applications and kernel routines [4], [43], [65], [109].

In this paper, we present FaScalSQL, a fast and scalable
GPU-accelerated SQL query engine that overcomes severe
GPU underutilization in out-of-memory query processing,
where progressive filtering prevents the GPU from fully ex-
ploiting its high degree of parallelism. FaScalSQL introduces a
new type of on-demand CPU-GPU co-processing engine that
changes the input data placement by exploiting both GPU-
initiated data transfer and CPU-GPU co-processing capability.
To align data movement with the query’s progressive filtering,
FaScalSQL replaces the static large unfiltered chunks with
a dynamic GPU-initiated on-demand fetching of necessary
input data guided by the host CPU’s proactive pre-filtering.

Main Pipeline

Table R
R.d

R.b

R.c

R.a Sub Pipeline
HT Build

T.c T.a

.
Table T

Sub Pipeline

HT Build

S.b S.a

.
Table S

S.c T.b

.

(. . .)
. = .
. = .

Fig. 1: A pipeline-driven execution of an example SQL query:
SELECT SUM(R.a+S.a+T.a) FROM R, S, T WHERE R.b=S.b
AND R.c=T.c AND R.d=”A” AND S.c<7 AND T.b=3

FaScalSQL is built upon three synergistic techniques: First,
On-Demand Zero-copy Caching (ODZC) enables the GPU’s
fine-grained access to host memory, ensuring the data transfer
reflects the progressive sparsity of valid input column values.
Upon ODZC, we propose Asynchronous Filter Pushdown
(AFP) to proactively pre-filter the unnecessary input columns
that the GPU needs to access in the first place using the
host CPU asynchronously with the GPU. This CPU-GPU co-
processing, in turn, can cause the host CPU to be a new
bottleneck, a CPU-GPU load imbalance. Finally, to make the
co-processing robust, a Contention-aware Query Optimizer
(CQO) adaptively manages host-side involvement, considering
varying CPU resource availability.

We implement FaScalSQL on a real GPU-equipped system
having an NVIDIA RTX A4000 GPU, and then compare
FaScalSQL’s query processing performance against the state-
of-the-art GPU-accelerated analytical SQL query engines.
We use the Star Schema Benchmark (SSB) [86] and TPC-
H [108] queries. Using SSB with scale factors of 100 and 200,
FaScalSQL achieves geometric mean speedups of 2.60× and
2.20× over HetExchange and Mordred, respectively. For the
SSB with a scale factor of 100 (∼60 GB of total table size),
FaScalSQL reduces host-to-GPU data movement by 39.36×
compared to streaming HetExchange [17], and achieves a ge-
ometric mean speedup of 11.48× over CPU-GPU distributive
Mordred [126] under severe host CPU-side contention.

In summary, this paper makes the following contributions:
• We identify and analyze the conflict between existing en-

gines’ static input data placement and analytical queries’
dynamic progressive filtering, leading to excessive host-to-
GPU data movement and CPU-GPU load imbalance.

• We propose FaScalSQL, a new on-demand CPU-GPU
co-processing engine that significantly enhances the ef-
fectiveness of GPU-initiated data fetching for analytical
queries. It resolves GPU underutilization and achieves scal-
able performance by synergistically combining on-demand
GPU-initiated data fetching, CPU-driven asynchronous pre-
filtering, and contention-aware query optimization.

• We implement FaScalSQL on real GPU-equipped systems
and show its superior performance over the existing GPU-
and CPU-based SQL query engines using SSB and TPC-H.

Host Memory
Memory Channels

Host CPU

Memory
Controller

Root
Complex

Core 0

La
st

 L
ev

el
 C

ac
he

In
te

rc
on

ne
ctL1$/L2$

Core 1
L1$/L2$

Core N-1
L1$/L2$

GPU
SM SM SM

Interconnect

PCIe Bus

L2$

GDDR

L2$

GDDR

L2$

GDDR

L2$

GDDR

(a) The underlying system architecture for out-of-memory GPU-
accelerated analytical SQL query engines

Host Memory

GPU

30 1 5
50 2 6
10 3 7
20 4 8

A
A
C
A

R.a R.b R.c R.d
10 1 5
20 4 6
50 3 8
40 2 7

B
B
A
A

S.a S.b S.c S.d

GPU Memory

30
50

5
6

R.a
1
2

A
A

R.b

Query
Result

Pipeline Kernel

Host-to-GPU Data Transfer Overlapping

R.c R.d

(b) Streaming

Host CPU

Host Memory

GPU

Pipeline Kernel

30 1 5
50 2 6
10 3 7
20 4 8

A
A
C
A

R.a R.b R.c R.d
10 1 5
20 4 6
50 3 8
40 2 7

B
B
A
A

S.a S.b S.c S.d

GPU Memory

50
10

R.a
3
4

R.b
5
6

R.c
A
C

R.d

Query
Result

Pipeline Kernel

Pre-Caching

(c) CPU-GPU distributive
Fig. 2: Working models of the existing GPU-accelerated SQL
query engines for out-of-memory input columns

II. BACKGROUND

A. Characteristics of GPU-Based Pipeline-Driven Execution

Recent studies [11], [14], [17], [26], [47], [65], [68], [87],
[88], [98], [116], [126], [130] have proposed GPU-accelerated
analytical SQL engines that execute SQL relational opera-
tions on GPUs using a pipeline-driven execution model [59],
[78], [87], [88], [98]. With column-oriented tables in host
memory [1], query planners decompose the SQL query into
pipelines by pipeline breakers (e.g., joins) [78], and assign
each pipeline an input table and its operations. Relational
operators in each pipeline are fused into a single GPU kernel,
invoked according to pipeline dependencies.

GPU-based pipeline-driven execution has two key traits:
dynamic progressive filtering and kernel fusion. Predicates
applied in the pipeline progressively filter out rows, so only
alive rows proceed, with their liveness tracked in a bit-vector.
Kernel fusion—widely used in these engines [17], [25], [26],
[87], [98], [116]—merges multiple operators into a single GPU
kernel to avoid costly materialization, retaining intermediate
data in on-chip storage. As shown in Fig. 1, as filtering
progresses (e.g., R.d=“A”), the valid rows become sparser, and
only these must be accessed in later operations (e.g., R.b, R.c
for hash probes), making data access increasingly selective
across the pipeline. Sub-pipelines build hash tables first, and
then the main pipeline emits the final result.

B. Processing Out-of-Memory Columns on a GPU

Processing large tables exceeding GPU memory requires
storing them in host memory and transferring them via the
PCIe bus, as shown in Fig. 2a. Two main approaches have
been proposed for the large tables, as summarized in Fig. 2.
• Streaming engines [17], [37], [51], [68], [69], [101], [129]

statically split input columns into large, GPU-fit chunks.
These chunks are streamed to the GPU and processed by the

pipeline kernel, which allows overlapping the data transfer
with kernel execution. For instance, as shown in Fig. 2b,
chunks of table R are sequentially transferred and processed.

• CPU-GPU distributive engines [11], [13], [14], [38], [47],
[50], [126] use a partial caching model. Based on offline pro-
filing, frequently accessed data is cached in GPU memory.
The GPU processes these statically cached chunks, while the
host CPU handles the remaining data, merging the results at
the end. For example, as shown in Fig. 2c, parts of table R
are pre-cached and processed by the GPU, while uncached
portions fall back to the CPU. Finally, the host CPU merges
the intermediate results to produce the query output.

III. MOTIVATION

We observe that both streaming and CPU-GPU distributive
engines, the two primary approaches for processing out-of-
memory columns, fail to achieve high scale-up performance.
This failure stems from two critical bottlenecks: excessive
host-to-GPU data movement and CPU-GPU load imbalance.
We identify that these come from the conflict between the
static input data placement of existing engines (i.e., fixed
and dense chunks or caches) and the dynamic progressive
filtering of analytical queries. This leads streaming engines
to wastefully transfer data that is eventually discarded, and
CPU-GPU distributive engines to offload a large share of the
workload to the host CPU as data scales. We use a GPU-
equipped system detailed in §V-A for the subsequent analyses.

A. Excessive Host-to-GPU Data Movement

Streaming engines statically split host-resident input
columns into dense chunks. They treat each chunk as a
separate in-memory execution, forcing the engine to move
entire chunks over the limited PCIe bus, oblivious to the
progressive sparsity created by the predicates of relational
operations. To quantify excessive host-to-GPU data movement,
we evaluate streaming HetExchange [17] and compare it with
DuckDB [20], a widely-used CPU-based SQL query engine.
Fig. 3 shows the latency breakdown of SSB query executions
of HetExchange and DuckDB with a scale factor of 100.
The results show that the host-to-GPU data transfer latency
significantly overshadows the fast GPU query executions since
the GPU kernel execution latencies of HetExchange are much
lower than DuckDB. Especially, this excessive data movement
overhead accounts for up to 93.5% of the total query execution
latency with Q1.3. Since the host-to-GPU data movement is
conducted through PCIe buses, whose bandwidths (32 GB/s
for PCIe 4.0 x16) are far lower than intra-GPU memory band-
widths (448 GB/s for RTX A4000), this bandwidth disparity
exacerbates the host-to-GPU data movement bottleneck.

B. CPU-GPU Load Imbalance

A static and fixed-size cache makes the GPU only process
the part of the input columns that resides in its cache; other-
wise, the workloads are assigned to the host CPU. This static
workload distribution cannot adapt to dynamic progressive
filtering, inevitably causing severe CPU-GPU load imbalance

GPU Host CPU Host-to-GPU GPU-to-Host

0

1

2

3

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

D
uc

kD
B

H
et

Ex
ch

an
ge

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

La
te

nc
y

[s
ec

]

SSB Query / SQL Query Engine

Fig. 3: Latency breakdown of the SSB queries of DuckDB [20]
and HetExchange [17] on RTX A4000 (PCIe 4.0 x16)

GPU
Query Processing Throughput

Host CPU

0%
25%
50%
75%
100%

0
2
4
6
8

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

C
PU

-to
-G

PU

W
or

kl
oa

d
D

is
tr

ib
ut

io
n

R
at

io

Q
ue

ry
 P

ro
ce

ss
in

g
T

hr
ou

gh
pu

t
[T

PS
×1

09
]

Scale Factor

(a) Query processing throughput and
workload distribution ratio

Q1.1 Q2.1
Q3.1 Q4.1

0
2
4
6
8

N
or

m
al

iz
ed

L

at
en

cy

Available CPU Resource

(b) Normalized query
execution latencies

Fig. 4: Performance analyses of Mordred [126] with varying
scale factors and CPU resource availability

as data scales. To quantify the CPU-GPU load imbalance, we
evaluate state-of-the-art CPU-GPU distributive Mordred [126].
As shown in Fig. 4a, when the scale factor grows, the workload
share offloaded to the host CPU rises to 83.7%, causing a
65.0% drop in throughput. This demonstrates that the static
workload distribution is inherently not scalable with data size.

Even worse, static workload distribution makes these en-
gines significantly vulnerable to host CPU-side contention
which has been commonly observed in multi-tenant cloud
environments, database servers, and modern data centers [28],
[49], [60], [119]. Such CPU-intensive query processing of-
ten requires sharing physical resources with other co-located
applications, background system routines, and long-running
services [77], [110], [123], [127]. To quantify this critical
vulnerability, we evaluate the engine’s performance under
varying CPU resource availability by reducing the core count
from 16 to 1 (i.e., 100% to 6.3%). As Fig. 4b shows, query
execution latencies increase sharply as available resources
diminish, demonstrating that the static workload distribution
is not robust and vulnerable to the host CPU-side contention.

IV. FASCALSQL

A. Design Goals and Overview

We present FaScalSQL, a fast and scalable GPU-accelerated
SQL query engine for out-of-memory tables. Our primary
goal is to resolve the conflict between the static input data
placement and the dynamic progressive filtering of analytical
queries. FaScalSQL directly tackles this by fundamentally
changing the input data placement from large unfiltered chunks
into GPU-initiated on-demand input data fetching. To achieve
this, we propose a new class of engine: an on-demand CPU-
GPU co-processing engine built upon three design goals.

1) Align with dynamic sparsity: The engine must align
physical data access with the query’s progressive filter-

TABLE I: Summary of prior GPU-accelerated SQL query engines and the novelty of FaScalSQL over the prior engines

Engine Key Ideas Performance
Characteristics

Conflict w/ Dynamic
Progressive Filtering FaScalSQL’s Novelty Over Prior Engines

In-Memory: Process analytical SQL queries for tables which fully reside in the GPU memory
DogQC [26] Mitigation of GPU

pipeline kernels’ thread
divergence

Fast ✓
Not scalable ✗

(GPU mem. size-bound)

N/A
(No support for

out-of-memory tables)

Can process out-of-memory tables using fine-grained
on-demand host memory access (ODZC), which avoids
the need to fit all data in capacity-limited GPU memory

Pyper [87]
Themis [40]

Streaming: Process analytical SQL queries by streaming GPU memory-fit table chunks from the host memory
Sioulas et al. [101] GPU-centric,

join-specific pipelining

Scalable ✓
Not fast ✗

(PCIe B/W-bound)

Conflict
(Excessive

data movement)

Provide a generic data reduction scheme that applies to
any selective predicate within a queryTriton Join [69]

Raza et al. [92] GPU-initiated data transfer
for SQL query processing

Combine on-demand GPU-initiated data transfer with
CPU-side pre-filtering for efficient host-to-GPU data transfer

Lutz et al. [68] Input column streaming
through fast interconnects

Exploit query semantics to logically reduce the data
movement, instead of relying on fast interconnectVortex [129]

Saber [51] GPU-centric or static
work sharing

Replace static chunk-based streaming with fully dynamic
caching by ensuring only valid data, determined during
query processing, get transferred to GPU memory

HeavyDB [37]
HetExchange [17]

CPU-GPU Distributive: Distribute analytical SQL query processing workloads between a static fixed-size GPU memory cache and the host memory
Ocelot [14], [38] Adaptive CPU-GPU

operator placement Fast (on cache) ✓
Not scalable ✗

(Host CPU-bound)

Conflict
(CPU-GPU

load imbalance)

Make CPU-GPU collaboration be dynamically adaptive to
underlying system setups and host CPU-side contentionHERO [47]

CoGaDB [11], [13] Locality-based input
column partitioning onto

the static GPU cache

Eliminate the inflexibility of static, profile-based caching
by removing pre-caching and dynamically balancing the
host CPU and GPU loads

Kinetica [50]
Mordred [126]

On-Demand CPU-GPU Co-Processing: Combine GPU-initiated dynamic on-demand data transfer and the host CPU-side pre-filtering

FaScalSQL
(This work) ODZC, AFP, and CQO Fast ✓

Scalable ✓
No conflict

Align with analytical queries’ dynamic sparsity with ODZC,
proactively minimize data movement with AFP, and ensure
robust CPU-GPU co-processing with CQO

Host Memory
On-Demand Zero-Copy Caching (ODZC)

GPU

𝐻𝑇!
k v

⁝

𝐻𝑇"
k v

⁝
⋈ ⋈

k v

⁝

v

Hash Table Probes

Host
Memory

Query
Result

⁝

y1

0⁝

1

1

GPU Pipeline Kernel Execution x
𝜸

⁝

R.b

⁝

R.c

⁝

R.a

𝜎

𝛾

R S T

𝜎 𝜎

⋈
⋈

Co
nt

en
tio

n-
aw

ar
e

Q
ue

ry

O
pt

im
iz

er
 (

CQ
O

)

bit-
vectorHost CPU

1

0⁝

1

1

𝑩𝑭𝑺 𝑩𝑭𝑻R.a

⁝

R.b

⁝

R.c

⁝

R.d

⁝
𝜎

Asynchronous Filter
Pushdown (AFP) w

v

u

⁝

R.a

⁝

R.b

⁝

R.c

⁝

R.d

Morsel 0

Input Columns

(a) The working model of FaScalSQL

GPU-to-HostExecution Host-to-GPU

Host CPU
PCIe Bus

GPU

Missing opportunity for CPU-GPU coprocessing
Timeline

Large Host-to-GPU Data Transfer Overhead

Streaming Engines

Host CPU
PCIe Bus

GPU CPU-GPU Load Imbalance

Timeline

Large Pre-Caching
Overhead

CPU-GPU Distributive Engines

Host CPU
PCIe Bus

GPU

Contention-aware Query Optimizer [.D]
Asynchronous Filter Pushdown [.C]
On-Demand Zero-copy Caching [.B]

Timeline
FaScalSQL (This work)

(b) Query execution timelines
Fig. 5: An overview of FaScalSQL and a comparison of its query execution timeline

ing. This is realized by On-Demand Zero-copy Caching
(ODZC), which shifts from a static to a dynamic GPU-
initiated on-demand host memory access.

2) Proactively minimize data movement: The engine must
intelligently guide the GPU to fetch only essential data.
Asynchronous Filter Pushdown (AFP) achieves this by
using the host CPU to pre-filter rows before they are ever
moved over the PCIe bus.

3) Ensure robust co-processing: This CPU-GPU collabora-
tion must be both robust and scalable. The Contention-
aware Query Optimizer (CQO) adaptively manages the
AFP workload based on system conditions, preventing
the host CPU from becoming a new bottleneck.

As detailed in Table I, this unique combination of fine-
grained, asynchronous, and adaptive techniques distinguishes
FaScalSQL from prior streaming and distributive engines.
Working Model. Fig. 5 shows the working model of FaScal-

SQL. The pipeline execution process is as follows:
❶ CQO determines the optimal placement of AFP operations

by analyzing system resource availability.
❷ The host CPU applies AFP operations (e.g., bloom filter

lookups) to data morsels, proactively pruning unnecessary
rows before they are ever accessed by the GPU.

❸ To minimize data movement, the host CPU marks the
positions of pruned rows in a shared bit-vector, making the
data’s dynamic sparsity visible to the GPU.

❹ The GPU asynchronously begins its kernel execution, using
ODZC and the bit-vector to fetch only valid, sparsely located
column values, thus aligning GPU’s input column access
with the query’s dynamic behavior.

❺ This co-processing continues until all input values are
processed and the final result is returned to host memory.

Fig. 5b shows the execution timelines of the three types of en-
gines. Unlike streaming engines, stalled by large data transfer

overheads, FaScalSQL minimizes data movement via AFP and
overlaps the data transfer with computation. Unlike distributive
engines that suffer from CPU-GPU load imbalance and large
pre-caching overheads, FaScalSQL’s adaptive co-processing,
guided by CQO, removes CPU-GPU load imbalance.

B. Aligning with the Dynamic Progressive Filtering Feature

The first step toward a scalable out-of-memory engine is to
align the input data placement with the dynamic progressive
filtering of analytical queries. We propose On-Demand Zero-
copy Caching (ODZC), a technique enabling GPU’s sparsity-
aware, fine-grained, on-demand access to the host memory.

1) Opportunity: On-Demand Access to Host Memory:
ODZC leverages modern GPU capabilities for direct host
memory access: Unified Virtual Memory (UVM) [33] and
zero-copy [82]. UVM migrates coarse-grained 4 KB pages
upon a fault [27], whereas zero-copy allows GPU kernels to
fetch data at a finer granularity, from a sector to a cache line
(e.g., 32–128 B) [3], [74], [75]. They present an opportunity
to fetch input column values only when required.

2) Challenge: Invalid Assumptions on GPU Working Set
Size: The key challenge in applying on-demand host memory
access comes from the assumption that a GPU’s working set is
always a dense, GPU-resident column. While this assumption
is valid for in-memory scenarios, enabling upfront, coalesced
loading to maximize internal GPU bandwidth [26], [88], [98],
which breaks down for out-of-memory processing.

Naively extending this assumption to out-of-memory data
leads to a severe bottleneck: massive data transfer ampli-
fication over the PCIe bus. This occurs because analytical
queries inherently create progressive sparsity by filtering rows.
Consequently, the true working set is no longer a dense block,
but rather a sparse, logically-defined subset of values scattered
across host memory, which must be processed on demand.

Algorithm 1: Sparsity-Aware Load Reordering
Input : OriginalSequence (Input pipeline kernel code’s operation sequence)
Output: ReorderedSequence (Reordered sequence for the input pipeline)

1 ReorderedSequence← ∅, loadedColumns← ∅
2 for each op in OriginalSequence do
3 if op is RelationalOperation then
4 for each col in op.inputColumns do
5 if col /∈ loadedColumns then
6 loadOp← OriginalSequence.find(col)
7 ReorderedSequence.append(loadOp)
8 loadedColumns.append(col)
9 end

10 end
11 end
12 if op is not LoadOperation then
13 ReorderedSequence.append(op)
14 end
15 end

3) Key Idea: On-Demand Zero-copy Caching (ODZC):
To make GPUs’ on-demand access capability effective for
analytical query processing, ODZC first introduces a sparsity-
aware load reordering algorithm (Algorithm 1). This reposi-
tions memory load operations of column values at the very
front of the first relational operation that actually consumes
them. Algorithm 1 starts with taking an initial operation
sequence and produces a reordered sequence of the input

𝜎

𝛾

R S T

𝜎 𝜎

⋈

Sum(R.a+S.a+T.a)

R.c = T.c

R.b = S.b

R.d = “A” S.c < 7 T.b = 3

⋈

Bit-vector Bit-vector Bit-vectorBit-vector

𝜎 ⋈ ⋈ 𝛾

1
1
1

1
1
1

1
1
1

1
1

1
1

1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1

1
1

1
R.d

1

1
1

1

1
1

1
1
1
1
1
1

1
1
1
1

R.b
1

R.a

1

1

1
1

1

1
R.c

32B
Sector

32B
Sector

32B
Sector

32B
Sector

32B
Sector

32B
Sector

32B
Sector

32B
Sector

32B
Sector

32B
Sector

128B $Line

Fig. 6: FaScalSQL’s pipeline execution with ODZC
0481205

0 0 001 0 01 0 1 1 10 100L a t e n c y Host-to-GPU (Zero-Copy) Host-to-GPU (UVM) Latency (Zero-Copy) Latency (UVM)

0

4

8

12

0

1

2

3

0.001 0.01 0.1 1 10 100

H
os

t-t
o-

G
PU

 D
at

a
M

ov
em

en
t [

G
B]

La
te

nc
y

[s
ec

]

Selectivity [%]

Fig. 7: Latencies and host-to-GPU data movements of ODZC
with zero-copy and ODZC with UVM for an example SQL
query: SELECT SUM(R.a) FROM R WHERE R.d=”A”

pipeline. It tracks loaded input columns using loadedColumns.
It iterates through each operation and checks if its input
columns are already loaded for relational operations (Lines 2-
5). If not, it inserts load operations for the unloaded columns
into reorderedSequence and updates loadedColumns (Lines 6-
8). Finally, it appends the current operation (excluding load
operations) to reorderedSequence, ensuring load operations are
placed just before dependent relational operations (Line 13).

ODZC explicitly prefers zero-copy over UVM due to the
memory-access granularity with the query-induced sparsity of
live tuples, ensuring the GPU fetches only values that survive
preceding predicates. Zero-copy enables sector- or cache-
line-sized remote loads from host-pinned memory, which
matches sparse access patterns and avoids over-fetch, whereas
UVM migrates at coarse page granularity and employs multi-
page prefetch, inflating transfers under sparsity. Concretely,
ODZC’s sparsity-aware load reordering delays each column
load to just before its first consuming operator so that, as the
bit-vector thins, subsequent loads of R.b, R.c, and R.a are trig-
gered only for surviving rows (Fig. 6). Values with anticipated
reuse are cached in shared memory, while one-shot values
are kept in registers to avoid additional movements. Our mi-
crobenchmark (Fig. 7) corroborates this choice: at a selectivity
of 0.01% with 4 B column values, the probability of skipping
page reads is only 19.4% in ideal ((1 − 1

104)
16·4KB/4B),

far below the 99.92% sector-skip rate achievable with zero-
copy, since UVM’s 4 KB migration and multi-page (e.g., 16-
page/64 KB) prefetch amplify data transfer under sparsity.

C. Minimizing Excessive Host-to-GPU Data Movement

Only with ODZC, a GPU inevitably transfers input column
values that will be discarded at the beginning of the pipeline.
Thus, to further minimize the amount of column values that
need to be accessed in the first place, we propose Asyn-
chronous Filter Pushdown (AFP), which leverages CPU-GPU
co-processing capability for proactive data reduction.

Host CPUGPU Host-to-GPU GPU-to-Host

R S

T

Host
Memory

R.d

R.b

R.c

R.a

S

T

Host
Memory

R.d

R.b

R.c

R.a

ODZC
R
ODZC + AFP

k v

k v
k v

k v

(a) Collection of selection and join predicates via AFP

GPU

GPU Cores

Host
Memory

Host CPU

Work
Queue

GPU
Memory

𝐻𝑇!
k v

⁝
𝐻𝑇"
k v

⁝

⋈!.#$%.#

⋈!.&$'.&

𝛾%()(!.+,%.+,'.+)

…
…

CPU Core 1

CPU Core 0

CPU Core 2

CPU Core N-1

…

AFP
Operations

AFP
Operations

AFP
Operations

AFP
Operations

11

11

1

⋈!.#$%.#

⋈!.&$'.&

𝜎!..$“0”
1 111

111

11

1

CPU
Morsel 0

Selection
Predicates

Bloom Filter
Index

Bloom Filter
Index

1 11

𝑄𝑢𝑒𝑟𝑦	𝑂𝑢𝑡𝑝𝑢𝑡

k v

⁝

GPU Morsel

R.a R.c R.b R.d

...

On-Demand
Zero-Copy

Caching
R.a R.b R.c R.d

CPU Morsel 0

CPU Morsel 1

CPU Morsel 2

CPU Morsel N-1

1 11 111…

… ...

1

1
1
1

1

1
1
1

Shared
Bit-Vector

(b) AFP-augmented morsel-based pipeline execution model
Fig. 8: Application of Asynchronous Filter Pushdown (AFP) to the query in Fig. 1 and its main pipeline execution

1) Opportunity: CPU-Assisted Pre-Filtering: Since input
columns reside in host memory, we can leverage the host CPU
to proactively pre-filter data before GPU access. This enables
FaScalSQL to apply established optimization principles like
Predicate Pushdown (PP) [120] and Sideways Information
Passing (SIP) [100], proven effective in distributed and storage
systems for reducing I/O overhead. PP evaluates selective
filters early in the pipeline, while SIP propagates filtering
information between pipelines (e.g., bloom filters from join
build-sides) to eliminate irrelevant rows proactively.

2) Challenge: Intra-Pipeline Dependency: However,
naively applying these filtering principles creates intra-pipeline
dependency. When the host CPU processes entire partitions
to generate complete filters before transferring to the GPU, it
forms a rigid CPU-then-GPU dependency that forces the high-
throughput GPU to remain idle. This pipeline stall completely
negates the performance benefits of concurrent execution and
CPU-GPU co-processing. The core challenge is implementing
host-side filtering that enables continuous, incremental data
flow to the GPU without hard synchronization points.

3) Key Idea: Asynchronous Filter Pushdown (AFP):
AFP is designed to break this intra-pipeline dependency. AFP
consists of two-step components to maximize data reduction
while preserving the efficiency of CPU-GPU concurrency.

First, AFP employs proactive, lightweight predicate collec-
tion. As shown in Fig. 8a, it restructures the query plan by
pushing down two types of operations to the bottom of the
pipeline: 1) simple selection predicates, and 2) lookups into
compact bloom filter indexes created from join build-sides and
allocates them to the host CPU. AFP avoids complex relational
operators, ensuring the workload on the host CPU is minimal
and focusing exclusively on discarding input column values.

Second, to remove intra-pipeline dependency, we propose an
AFP-augmented morsel-based pipeline execution model. This
maximizes the overlapping of host CPU-side AFP operation,
the GPU execution, and the host-GPU data transfer by ODZC.
As shown in Fig. 8b, the host CPU starts with processing input
column values in morsels (i.e., small chunks of tuples [59]).
It applies the filtering tasks to a morsel and updates a shared
bit-vector. The GPU does not wait for the entire column to

be processed. Instead, it begins its pipelined kernel execution
on the first set of morsels asynchronously, while the host
CPU works ahead on subsequent morsels. With the constantly
updated bit-vector, the GPU leverages ODZC to fetch only the
sparse, valid input column values from the host memory.

D. Ensuring Fast and Scalable CPU-GPU Co-Processing

Limited and fluctuating CPU availability makes static of-
floading less effective. We introduce the Contention-aware
Query Optimizer (CQO), which selects a subset of AFP tasks
to make FaScalSQL robust across various CPU availabilities.

1) Opportunity: Fine-Grained Offloading Space: AFP
decomposes into separable, lightweight filtering tasks, creating
a combinatorial offloading space over which an optimizer can
pick exactly which filters to execute on the CPU for a given
query and system state. This admits a principled placement
decision rather than static rules, enabling dynamic CPU–GPU
co-processing tuned to predicate selectivities, GPU pipeline
structure, and measured CPU availability.

2) Challenge: Host CPU-Side Contention: We find that
the decision to apply AFP involves a trade-off: it reduces
GPU work but consumes CPU cycles. In the case of real-
world system deployments, 1) numerous various combinations
of the host CPU and the GPU having different computational
throughput exist, and 2) the host CPU is a shared, con-
tended resource; the host CPU’s resource availability is usually
contended by co-located applications or background system
routines [4], [29], [110]. As shown in Fig. 9, we observe that
when available CPU resource decreases from 100% to 6.25%,
offloading all AFP operations leads to a 3.48× slowdown in
query execution latency. This not only loses its benefit but
also can make the engine possibly slower than if AFP were
not used at all (up to 4.06× slowdown compared to the ODZC).

3) Key Idea: Contention-aware Query Optimizer (CQO):
To ensure Asynchronous Filter Pushdown (AFP) remains
effective under varying host CPU contention, CQO employs
an analytical cost model to find the optimal AFP placement,
P ∗, that minimizes the end-to-end query latency.

P ∗ = argmin
P∈P

max(CostGPU ,CostCPU)

GPU Host CPU GPU-to-Host

0
1
2
3
4

O
D

ZC
10

0% 50
%

25
%

12
.5

0%
6.

25
%

O
D

ZC
10

0% 50
%

25
%

12
.5

0%
6.

25
%

O
D

ZC
10

0% 50
%

25
%

12
.5

0%
6.

25
%

O
D

ZC
10

0% 50
%

25
%

12
.5

0%
6.

25
%

Q1.1 Q2.1 Q3.1 Q4.1N
or

m
al

iz
ed

 L
at

en
cy

SSB Query / Available CPU Resource
Fig. 9: FaScalSQL’s normalized query execution latencies
allocating all available AFP operations to the host CPU with
varying available CPU resources. ODZC bars represent the
baseline without any AFP operations assigned to the host CPU.

Because FaScalSQL executes CPU and GPU tasks in a
pipelined manner, the total latency is dominated by the longer-
running task. Therefore, our objective function is to minimize
max(CostGPU ,CostCPU), reflecting the pipelined execution.

The optimizer finds the best plan P ∗ by searching all
possible AFP placements P. A plan partitions a query’s
relational operations (RO) into a set for the CPU (AFP Ops)
and the remainder for the GPU (GPU Ops), except for the
selection operations used for s, derived from all combinations
of selection (s ⊆ AFPs) and join (j ⊆ AFPj) predicates.

P = {(AFP Ops,GPU Ops) |AFP Ops = s ∪ j,

∀s ⊆ AFPs, ∀j ⊆ AFPj

GPU Ops = RO − s}

The cost of each operator depends on the fraction of valid
tuples it processes (RAFP

i for CPU, RGPU
i for GPU), the

cumulative product of prior filter selectivities (λk). Our model
avoids double-counting filters applied on both CPU and GPU.

R
AFP
i =

i−1∏
k=1

λ
AFP
k

R
GPU
i =



RAFP
|AFPOps|+1 , If i = 1

RGPU
i−1 , If ∃k : AFP Opk ∈ AFP Ops and

AFP Opk corresponds to GPU Opi−1

RGPU
i−1 · λ

GPU
i−1 , Otherwise

The total costs are calculated as the sum of per-operator
costs. CostCPU is scaled by the available CPU resources
(AvailableCPU). CostGPU includes both computation and the
data transfer cost for ODZC. The transfer cost is a function of
the probability of accessing a memory sector (PODZC

i), which
depends on the tuple ratio RGPU

i . Operator throughputs (TP)
are pre-profiled at system initialization [12], [87], [88], [122].

P
ODZC
i = 1− (1− R

GPU
i)

|Sector|/|ColumnV alue|

CostGPU =

|GPU Ops|∑
j=1

#Tuples · (
RGPU

j

TPGPU
j

+
PODZC

j · LatSector

|Sector|/|ColumnV alue|
)

CostCPU =

|AFP Ops|∑
j=1

#Tuples ·
RAFP

j

TPAFP
j · AvailableCPU

CQO requires selectivities derived from existing cardinality
estimation methods [21], [31], [32], [55] or one-time profil-
ing [11], [47], [88], [131]. Since CQO runs during the query
planning phase, its overhead is negligible.

Query Plan

Physical Execution Plan

CPU
Operations

Query Optimizer
Contention-aware Query

Optimizer
Profiled Characteristics of

Underlying System

SQL Query Execution Coordinator

Memory Management

Query Executor

GPU
Memory

Host
Memory
Input

Columns

GPU
Operations

Shared
Bit-Vectors

Join Hash
Tables

Hash Aggr.
Tables

Bloom
Filters

Bloom
Filters

Physical Execution Plan

Sub-Pipeline Main PipelineSub-Pipeline

CUDA Stream

GPU Pipeline
Kernel

CPU Threads (AVX2)
CPU Morsels

CPU Morsels

GPU Morsel

Work
Stealing

Fig. 10: FaScalSQL system overview

E. Implementation

Fig. 10 illustrates FaScalSQL’s architecture, comprising
three modules: query optimizer, execution coordinator, and
query executor. We extend Crystal [98], an open-source
CUDA-based library for analytical query processing, chosen
for its modular function library and tile-based execution model
which facilitates integration of our hardware-conscious tech-
niques. While built on Crystal, FaScalSQL’s principles can
also be applied to other GPU query compilers supporting
pipeline-driven execution [17], [26], [88].

1) Query Optimizer: The query optimizer implements our
Contention-aware Query Optimizer (CQO) as a pre-execution
pass on the query plan. It extracts bloom filter operations from
hash joins, identifies filter predicates suitable for AFP, and
evaluates the cost model using pre-profiled hardware char-
acteristics to determine optimal AFP placement. The output
physical execution plan specifies which filters execute as AFP.
We use initial query plans from Crystal [98] and DogQC [26],
both highly optimized for GPU.

2) Execution Coordinator: Execution coordinator is the
central component responsible for managing the end-to-
end query lifecycle and memory management. Upon re-
ceiving a physical execution plan from the optimizer, the
coordinator first initializes necessary data structures in host
memory, including the shared bit-vector for pruned rows.
The coordinator ensures that a zero-copy memory access
is enabled by allocating input columns in host-pinned
memory with cudaMallocManaged() and setting the
cudaMemAdviseSetAccessedBy flag. For memory man-
agement, while input columns reside in host memory, inter-
mediate pipeline outputs (e.g., hash tables) are preferentially
allocated in dedicated GPU memory, falling back to zero-copy
memory only if GPU memory capacity is exceeded.

3) Query Executor: Query executor includes host-side run-
time for AFP and GPU-side runtime for the main pipeline. For
each pipeline, the executor spawns a set of CPU threads that
dynamically pull tasks from a shared pool of data morsels
using a work-stealing approach. Each morsel consists of 4K
tuples, a size chosen to ensure the working set fits efficiently
within the CPU’s Last-Level Cache (LLC). Threads execute
filter predicates using AVX2-vectorized operations [91] with
bloom filter lookups optimized for LLC residency, updating
the shared bit-vector. Following a pipelined model, CPU

MonetDB DuckDB HeavyDB HetExchange Kinetica Mordred FaScalSQL

0
2
4
6
8

SF
=1
00

SF
=2
00Fa

Sc
al

SQ
L

’s
G

eo
m

et
ri

c
M

ea
n

Sp
ee

du
p

O
ve

r

Scale Factor

0.1

1.0

10.0

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

SF=100
L

at
en

cy
 [s

ec
]

Scale Factor / SSB Query

0.1

1.0

10.0

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

SF=200

(a) SSB queries with scale factors of 100 and 200 (i.e., 3.7× and 7.5× of RTX A4000’s memory capacity)

0
5
10
15
20
25

SF=100Fa
Sc

al
SQ

L
’s

G

eo
m

et
ri

c
M

ea
n

Sp
ee

du
p

O
ve

r

Scale Factor

0.0
0.1
1.0
10.0
100.0
1,000.0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22L
at

en
cy

 [s
ec

]

TPC-H Query

MonetDB DuckDB HeavyDB HetExchange Kinetica FaScalSQL

(b) TPC-H queries with a scale factor of 100 (i.e., 6.3× of RTX A4000’s memory capacity)

Fig. 11: Query execution latencies of the baseline SQL query engines and FaScalSQL on RTX A4000 + PCIe 4.0 x16. Red
dotted bars denote that they cannot be executed due to out-of-memory errors. Note that the y-axes are shown on a log scale.

threads process a batch of morsels to create a GPU morsel,
then asynchronously launch the corresponding GPU kernel
on a dedicated CUDA stream, allowing for the concurrent
processing of subsequent morsels.

V. EVALUATION

A. Experimental Setup

System Configuration. We conduct experiments using
NVIDIA RTX A4000 [84] and NVIDIA TITAN RTX [83]
GPUs attached to the system, which features an AMD Ryzen
3950X CPU [5] with 16 cores and a 64-MB LLC. The sys-
tem’s dual-channel DDR4-2666 memory provides a theoretical
bandwidth of 42.6 GB/s. Our primary evaluation is conducted
on the RTX A4000, selected for its advanced architecture and
support for PCIe 4.0, which offers double the theoretical host-
to-device bandwidth compared to PCIe 3.0. For sensitivity
analysis (§V-G), we use the TITAN RTX, a comparable high-
performance GPU limited to PCIe 3.0. Table II shows the
architectural characteristics of RTX A4000 and TITAN RTX.
Baseline SQL Query Engines. We employ six representative
query engines as baselines. For a fair comparison of all base-
line setups, focusing solely on the in-memory query processing
scenario, we evaluate the engines under conditions where all
input columns reside in host memory with no swap memory.
In addition, the input columns have not been recently accessed
or optimized for immediate query execution.
• MonetDB [10] is a widely-used CPU-based SQL query

engine for in-memory analytical query processing.
• DuckDB [20] is a CPU-based SQL query engine optimized

for vectorized in-memory analytical query processing.
• HeavyDB [37] is a commercial GPU-accelerated SQL query

engine optimized for analytical SQL query processing.

TABLE II: Characteristics of the two evaluated GPUs
NVIDIA RTX A4000 NVIDIA TITAN RTX

PCIe Bus 32-GB/s PCIe 4.0 x16 16-GB/s PCIe 3.0 x16
GPU Microarchitecture Ampere Turing
GPU Memory Size 16 GB 24 GB
GPU Memory Bandwidth 448 GB/s 672 GB/s

• HetExchange [17] is a framework for executing queries
using heterogeneous hardware (i.e., a GPU and the host
CPU). We reproduce streaming HetExchange by extending
Crystal [98], a CUDA-based library, and DogQC [26], an
open-source CUDA-based query compiler. We use Crystal
for SSB queries and DogQC for TPC-H queries, as Crystal
is optimized for SSB workloads while DogQC provides
comprehensive support for all TPC-H queries.

• Kinetica [50] is a commercial CPU-GPU distributive engine
for various domains of analytic queries (e.g., graphs).

• Mordred [126] is the state-of-the-art CPU-GPU distributive
engine that optimizes SQL query execution with profiling-
based input column caching on GPU memory. Note that
Mordred is also built with the Crystal library.

Benchmarks. To evaluate FaScalSQL, we use Star Schema
Benchmark (SSB) [86], a widely-used collection of 13 SQL
queries reflecting real-world data analytics workloads [11],
[25], [42], [61], [90], [98], [121], [126], [130]. We employ
Scale Factors (SFs) of 100 and 200 (∼60 GB and ∼120 GB
of total table sizes; 3.7× and 7.5× larger than RTX A4000’s
GPU memory). We also employ TPC-H benchmark [108] with
a SF of 100 (∼100 GB of total table size; 6.3× larger than RTX
A4000’s GPU memory). We evaluate TPC-H queries except
Mordred [126], as it currently lacks support for TPC-H.

B. Fast GPU-Accelerated Query Executions

FaScalSQL delivers consistent speedups over all baselines
on SSB and TPC-H by aligning with the dynamic pro-
gressive filtering feature of analytical queries (Fig. 11). On
SSB (SF=100 and 200), FaScalSQL achieves geometric-mean
gains of 5.16×, 5.85×, 5.80×, 2.60×, 4.54×, and 2.20× over
MonetDB, DuckDB, HeavyDB, HetExchange, Kinetica, and
Mordred, respectively, driven by ODZC’s sector-level host
reads that track the bit-vector’s evolving sparsity to curb PCIe
traffic, and AFP’s predicate/bloom pruning that further reduces
sectors ODZC must fetch. Higher-selectivity SSB queries
amplify the effects because the valid-tuple ratio and hence
the amortized transfer cost; for instance, Q3.4 yields 4.48×
over HetExchange. Against Mordred, FaScalSQL’s gap widens

HeavyDB HetExchange Kinetica Mordred FaScalSQL

0.0
0.1
0.3
1.0
4.0
16.0

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

H
os

t-
to

-G
PU

 D
at

a
M

ov
em

en
t [

G
B

]

SSB Query

(a) SSB queries with a scale factor of 100

0.0
0.1
0.3
1.0
4.0
16.0

Q
1
Q
2
Q
3
Q
4
Q
5
Q
6
Q
7
Q
8
Q
9

Q
10
Q
11
Q
12
Q
13
Q
14
Q
15
Q
16
Q
17
Q
18
Q
19
Q
20
Q
21
Q
22

H
os

t-
to

-G
PU

 D
at

a
M

ov
em

en
t [

G
B

]

TPC-H Query

(b) TPC-H queries with a scale factor of 100

Fig. 12: Host-to-GPU data transfer size of the baseline GPU-accelerated SQL query engines and FaScalSQL. The red dotted
bars denote that they cannot be executed due to out-of-memory errors. Note that the y-axes are shown on a log scale.

MonetDB DuckDB HeavyDB HetExchange Kinetica Mordred FaScalSQL

1
2
4
8
16
32

10
0% 25
%

6.
25
%

Available
CPU

UtilizationFa
Sc

al
SQ

L’
s

G
eo

m
et

ri
c

M
ea

n
Sp

ee
du

p
O

ve
r

12
.5
%

50
%

12
.5
%

50
%

10
0% 25
%

6.
25
%

12
.5
%

50
%

10
0% 25
%

6.
25
%

0

1

10

100

10
0% 25
%

6.
25
%

50
%

12
.5
%

10
0% 25
%

6.
25
%

50
%

12
.5
%

Q1.1 Q2.1 Q3.1 Q4.1

L
at

en
cy

 [s
ec

]

SSB Query / Available CPU Utilization

(a) SSB queries with a scale factor of 100

1
2
4
8
16
32
64

10
0% 25
%

6.
25
%

Available
CPU

UtilizationFa
Sc

al
SQ

L’
s

G
eo

m
et

ri
c

M
ea

n
Sp

ee
du

p
O

ve
r

12
.5
%

50
%

12
.5
%

50
%

10
0% 25
%

6.
25
%

12
.5
%

50
%

10
0% 25
%

6.
25
%

12
.5
%

50
%

10
0% 25
%

6.
25
%

12
.5
%

50
%

10
0% 25
%

6.
25
%

0.0
0.1
1.0
10.0
100.0
1,000.0

10
0% 25
%

6.
25
%

50
%

12
.5
%

10
0% 25
%

6.
25
%

50
%

12
.5
%

10
0% 25
%

6.
25
%

50
%

12
.5
%

10
0% 25
%

6.
25
%

50
%

12
.5
%

Q1 Q2 Q5 Q6 Q11 Q16 Q17 Q22

L
at

en
cy

 [s
ec

]

TPC-H Query / Available CPU Utilization

(b) TPC-H queries with a scale factor of 100

Fig. 13: FaScalSQL’s query execution latencies and speedups over baseline SQL query engines with varying available host
CPU resource availability. Note that the y-axes are shown on a log scale.

with increasing SF (achieving geometric mean speedup from
2.15× to 2.24× from SF=100 to 200), consistent with CQO
avoiding CPU overload due to misses in static GPU-resident
cache. CQO places only the AFP tasks whose CPU cost under
AvailableCPU is amortized by GPU savings, preventing the
CPU from becoming the bottleneck and contention.

On TPC-H (SF=100), FaScalSQL achieves geometric-mean
speedups of 20.92×, 6.38×, 14.90×, 11.28×, and 10.68× over
MonetDB, DuckDB, HeavyDB, HetExchange, and Kinetica,
respectively. TPC-H pipelines contain more dependency points
and early predicates, which increase the opportunities for AFP
to prune before GPU access and for ODZC to delay and
sparsify loads; this reduces both compute and the sector-hit
probability across more stages than in SSB, compounding
the benefit. Unlike engines that pre-stage large inputs in
GPU buffers, FaScalSQL keeps inputs host-resident and pulls
sectors on demand via ODZC, avoiding GPU buffer pressure
and out-of-memory conditions observed in competing setups
(HeavyDB, HetExchange) on larger inputs.

C. Large Reductions in the Data Movement

To quantify the reduction in host-to-GPU data movement,
we compare the data transfer sizes of HeavyDB, HetExchange,
Kinetica, Mordred, and FaScalSQL for SSB and TPC-H
queries (SF=100). As shown in Fig. 12, FaScalSQL achieves a
geometric mean data movement reduction of 39.36× (SSB) and
20.38× (TPC-H) compared to HetExchange. This reduction is
not merely an incremental improvement but validates the effec-
tiveness of the alignment with dynamic progressive filtering.
ODZC provides the sparsity-aware fine-grained host memory
access, and AFP provides significant data movement reduction
to guide ODZC to refer to a sparse bit-vector. For queries with
high selectivity (e.g., SSB Q3.4), where predicates filter out
over 99% of rows [86], this synergy is particularly potent. In

contrast, existing engines cannot benefit from such progressive
filtering due to static input data placement, reaching host-to-
GPU data transfer of gigabyte-scale volumes.

D. Contention-Aware Query Processing

To evaluate the robustness of FaScalSQL on host CPU-
side contention, we compare query execution latencies using
a scale factor of 100 on four representative SSB queries [42]
(one from each query group, e.g., Q1.1) and eight TPC-
H queries, which were specifically chosen as they could be
run on all baseline systems without out-of-memory errors.
We simulate varying levels of host CPU-side contention by
adjusting available CPU resources from 100% to 6.25%,
reducing core count from 16 to 1 [18], [45], [66], [96]. Fig. 13
demonstrates FaScalSQL’s consistent performance advantages.
As CPU resources decrease, speedups of FaScalSQL over
CPU-reliant engines (MonetDB, DuckDB, Kinetica, Mordred)
increase, highlighting CQO’s adaptive load balancing. It al-
lows FaScalSQL to maintain high performance even with
limited CPU resources. Fig. 13a reveals an important differ-
ence in CPU resource utilization efficiency. Mordred’s latency
increases by 845.6% as available CPU resource drops from
100% to 6.25%, FaScalSQL maintains stable latency (133.5%
for FaScalSQL). This comes from Mordred’s static, fixed-size
GPU workload due to the fixed GPU cache, which makes
the CPU overloading inevitable. With 6.25% of available
CPU resources, FaScalSQL still outperforms CPU-unreliant
HeavyDB and HetExchange, showing the robust, scalable
CPU-GPU co-processing design of FaScalSQL.

E. CPU-GPU Load Balance

To validate the CPU-GPU load balance of FaScalSQL, we
break down query execution latencies of four SSB queries
(SF=100). For overlapped latencies in the pipeline executions,

0

1

2

3

M
on

et
D

B
D

uc
kD

B
H

ea
vy

D
B

H
et

Ex
ch

an
ge

K
in

et
ic

a
M

or
dr

ed
Fa

sc
al

SQ
L

M
on

et
D

B
D

uc
kD

B
H

ea
vy

D
B

H
et

Ex
ch

an
ge

K
in

et
ic

a
M

or
dr

ed
Fa

sc
al

SQ
L

M
on

et
D

B
D

uc
kD

B
H

ea
vy

D
B

H
et

Ex
ch

an
ge

K
in

et
ic

a
M

or
dr

ed
Fa

sc
al

SQ
L

M
on

et
D

B
D

uc
kD

B
H

ea
vy

D
B

H
et

Ex
ch

an
ge

K
in

et
ic

a
M

or
dr

ed
Fa

sc
al

SQ
L

Q1.1 Q2.1 Q3.1 Q4.1

L
at

en
cy

 [s
ec

]

SSB Query / SQL Query Engine

GPU Host CPU Host-to-GPU GPU-to-Host

Fig. 14: Latency breakdowns of the baseline SQL query
engines and FaScalSQL (SSB, SF=100)

the breakdown prioritizes GPU, host CPU, host-to-GPU, and
GPU-to-host latencies. By prioritizing GPU over host CPU
and data transfer, we identify slowdowns caused by CPU over-
load and excessive data movement, showing non-overlapped
host CPU and data transfer latencies over GPU execution.
Fig. 14 shows that, unlike HeavyDB and HetExchange, which
experience excessive host-to-GPU data movement, FaScalSQL
significantly minimizes these transfers and overlaps their la-
tencies. FaScalSQL also minimizes the host CPU latencies by
AFP-augmented morsel-based asynchronous execution model
and CQO; however, Kinetica and Mordred suffer from its
severe host CPU reliance and pre-caching overhead. The
results show that FaScalSQL’s scalability can be achieved
without the host CPU being a bottleneck of the GPU.

F. Effectiveness of FaScalSQL’s Key Ideas

To demonstrate and quantify the effectiveness of each of
FaScalSQL’s key ideas, we conduct an ablation study. We start
with a baseline, ZC-Only, which uses a zero-copy implementa-
tion without our optimizations. We then incrementally enable
ODZC, AFP, and our full FaScalSQL system, which includes
the CQO. We compare these configurations against an Optimal
placement determined by offline profiling. Fig. 15 presents the
results for four SSB queries (SF=100) under high and low
CPU availability, revealing a clear progression. The ZC-Only
baseline offers limited benefits, as it still transfers all data.
Enabling ODZC’s sparsity-aware load reordering (+ODZC)
provides a significant speedup by aligning physical access with
logical sparsity, which is critical for reducing data movement.
Adding AFP (+AFP) further reduces latency by proactively
pruning data on the CPU. Finally, our full FaScalSQL system
demonstrates the necessity of CQO; under severe CPU con-
tention, it adaptively avoids harmful pushdowns and achieves
performance nearly identical to the Optimal configuration,
proving its effectiveness of robust and scalable co-processing.

G. Sensitivity Studies

1) PCIe Bus Bandwidth: To assess FaScalSQL’s robustness
in I/O-constrained environments, we evaluated it on a TITAN
RTX GPU with the slower PCIe 3.0 bus. As shown in
Fig. 16, FaScalSQL still achieves significant geometric mean
speedups, ranging from 2.81× to 6.67× over all baselines. This
result demonstrates that FaScalSQL’s performance stems from
its architectural efficiency in logically reducing data before

0.00.010.0

H
… +… H
… +… H
… +… H
… +… H
… +… H
… +… H
… +… H
… +… H
… +… H
… +… H
… +… H
… +…

GPU Host CPU Host-to-GPU GPU-to-Host Data Movement

0.0
4.0
8.0
12.0
16.0

0.0

1.0

2.0

ZC
-O

nl
y

+O
D

Z
C

+A
FP

Fa
sc

al
SQ

L
O

pt
im

al
ZC

-O
nl

y
+O

D
Z

C
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

ZC
-O

nl
y

+O
D

Z
C

+A
FP

Fa
sc

al
SQ

L
O

pt
im

al
ZC

-O
nl

y
+O

D
Z

C
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

Q1.1 Q2.1 Q3.1 Q4.1

6.25% (1 out of 16 Cores)

H
os

t-
to

-G
PU

 D
at

a
M

ov
em

en
t [

G
B

]

N
or

m
al

iz
ed

 L
at

en
cy

SSB Query

0.0
4.0
8.0
12.0
16.0

0
0.4
0.8
1.2

ZC
-O

nl
y

+O
D

Z
C

+A
FP

Fa
sc

al
SQ

L
O

pt
im

al
ZC

-O
nl

y
+O

D
Z

C
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

ZC
-O

nl
y

+O
D

Z
C

+A
FP

Fa
sc

al
SQ

L
O

pt
im

al
ZC

-O
nl

y
+O

D
Z

C
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

Q1.1 Q2.1 Q3.1 Q4.1

100% (16 out of 16 Cores)

H
os

t-
to

-G
PU

 D
at

a
M

ov
em

en
t [

G
B

]

N
or

m
al

iz
ed

 L
at

en
cy

SSB Query

1.00 1.57 1.00 1.98 1.98 1.00 1.96 0.53 1.98 1.98 1.00 1.64 0.55 1.98 1.98 1.00 1.96 0.52 1.98 1.98

1.00 1.22 1.98 1.98 1.98 1.00 1.71 1.88 1.98 1.98 1.00 1.60 1.92 1.98 1.98 1.00 1.92 1.84 1.98 1.98

1.
42
×

1.
57
×

1.
00
×

1.
98
×

1.
98
×

1.
00
×

1.
96
×

0.
53
×

1.
98
×

1.
98
×

1.
00
×

1.
64
×

0.
55
×

1.
98
×

1.
98
×

1.
00
×

1.
96
×

0.
52
×

1.
98
×

1.
98
×

1.
00
×

1.
22
×

1.
98
×

1.
98
×

1.
98
×

1.
00
×

1.
71
×

0.
88
×

1.
98
×

1.
98
×

1.
00
×

1.
60
×

1.
92
×

1.
98
×

1.
98
×

1.
00
×

1.
92
×

1.
84
×

1.
98
×

1.
98
×

!0 2!2 2 !0 2 !1 3!3 3 !1 3 !0 3!3 3 !0 3!3 3 !1 3!1 3

!0 2!2 2 !0 2 !1 3!3 3 !1 3 !0 3!3 3 !0 3!3 3 !1 3!1 3

(a) Available CPU utilization of 6.25% (1 out of 16 cores)

0.0
4.0
8.0
12.0
16.0

0
0.4
0.8
1.2

ZC
-O

nl
y

+O
D

ZC
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

ZC
-O

nl
y

+O
D

ZC
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

ZC
-O

nl
y

+O
D

ZC
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

ZC
-O

nl
y

+O
D

ZC
+A

FP
Fa

sc
al

SQ
L

O
pt

im
al

Q1.1 Q2.1 Q3.1 Q4.1

100% (16 out of 16 Cores)

H
os

t-
to

-G
PU

 D
at

a
M

ov
em

en
t [

G
B

]

N
or

m
al

iz
ed

 L
at

en
cy

SSB Query

1.
00
×

1.
22
×

1.
98
×

1.
98
×

1.
98
×

1.
00
×

1.
71
×

1.
88
×

1.
98
×

1.
98
×

1.
00
×

1.
60
×

1.
92
×

1.
98
×

1.
98
×

1.
00
×

1.
92
×

1.
84
×

1.
98
×

1.
98
×

0
2#

2
2#

0
2#

1
3#

3
3#

1
3#

1
3#

3
3#

0
3#

3
3#

1
3#

1
3#

(b) Available CPU utilization of 100% (16 out of 16 cores)

Fig. 15: Normalized latencies and data transfer sizes by in-
crementally applying FaScalSQL’s key ideas (SSB, SF=100).
Latencies are normalized to FaScalSQL. Fraction above each
bar denotes the count of placed AFP operations over available
operations of the main pipeline from LINEORDER.

0

1

10

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

L
at

en
cy

 [s
ec

]

SSB Query

MonetDB DuckDB HeavyDB HetExchange Kinetica Mordred FaScalSQL

Fig. 16: SSB query execution latencies of the baseline engines
and FaScalSQL on NVIDIA TITAN RTX + PCIe 3.0 x16
(SF=100). Note that the y-axis is shown on a log scale.

transfer, rather than relying on high-speed hardware. This
makes it highly effective even on bandwidth-limited systems.

2) Bloom Filter Size: We evaluated AFP’s sensitivity to
bloom filter size on SSB (SF=200). Fig. 17 shows that the false
positive rate drops to zero at 16 MB, a size that fits within the
CPU’s LLC. Smaller sizes (e.g., 64 KB) suffer from high false
positive rates, while larger sizes offer no further benefit and
risk slower lookups due to DRAM access. We therefore use a
16 MB filter to balance effectiveness and cache efficiency.

3) Impact on Data Skew: To evaluate FaScalSQL’s robust-
ness against non-uniform data, we compare query execution
latencies on the SSB benchmark (SF=100) with varying data
skews using a Zipf distribution from 0.0 to 2.0. In Fig. 18, the
results show that FaScalSQL maintains stable query execution
latency across all levels of data skew. This resilience stems
from our key ideas’ focus on minimizing data movement

GPU Host CPU GPU-to-Host False Positive Rate

0%
25%
50%
75%
100%

0
300
600
900

1200

64 25
6

10
24

40
96

16
38

4
65

53
6 64 25
6

10
24

40
96

16
38

4
65

53
6 64 25
6

10
24

40
96

16
38

4
65

53
6 64 25
6

10
24

40
96

16
38

4
65

53
6

Q1.1 Q2.1 Q3.1 Q4.1 Fa
lse

 P
os

iti
ve

 R
at

e

La
te

nc
y

[m
s]

SSB Query / Bloom Filter Size [KB]
Fig. 17: Impacts of bloom filter size on the SSB query execu-
tion latencies and the bloom filters’ effectiveness (SF=200)

0

0.5

1

1.5

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

N
or

m
al

iz
ed

L

at
en

cy

SSB Query

Zipf = 0.0 Zipf = 0.5 Zipf = 1.0 Zipf = 1.5 Zipf = 2.0

Fig. 18: Query execution latencies varying Zipf factors

based on query selectivity, rather than being dependent on
the underlying data distribution. FaScalSQL effectively prunes
rows based on predicate outcomes, regardless of how fre-
quently certain values appear. We observe a slight performance
improvement in join-heavy queries under high skew, likely due
to better CPU cache locality for frequently joined keys during
the hash table build and probe phase [8].

4) Impact of Selectivity Estimation Errors: To evaluate
the impact of errors on estimated selectivities, we conduct
a latency comparison on four representative SSB queries
(SF=100) by injecting intentional errors (-20% to +20%) in the
selectivity estimates. These experiments are conducted under
two scenarios: severely constrained CPU resources (6.25%)
and full availability (100%). In Fig. 19, the results reveal
distinct trends depending on CPU availability. Under scarce
CPU resources, underestimating selectivity leads FaScalSQL
to overestimate the utility of CPU filtering and allocate more
work to the constrained CPUs, which in turn increases overall
latency. Conversely, under sufficient CPU resources, a V-
shaped latency curve emerges. Overestimating selectivity leads
CQO to deem CPU filtering inefficient and thus disallow work.
Underestimating selectivity leads CQO to allocate too much
work to the CPUs, which in turn increases latency due to
pipeline imbalance. However, the results show that FaScalSQL
can achieve meaningful data reduction and fast performance
even using only GPUs, demonstrating robust operation even
when there are errors in the given selectivity.

VI. DISCUSSIONS

A. Overhead of Contention-Aware Query Optimizer (CQO)

In our evaluation, we focus solely on execution latencies
to align with baseline engines and isolate the impact of
our optimizations. However, for practical, real-world GPU-
accelerated query deployment, pre-execution costs, including
the overhead of CQO, should be considered. We measure the
pre-execution latencies using JIT compilation frameworks for
GPU-accelerated SQL queries (i.e., rNdN [52], DogQC [26],
Pyper [87], and Themis [40]) on SSB and TPC-H queries.
On average, code generation required 14ms, and NVCC com-
pilation needed 10ms per query. In addition, adding CQO

Q1.1 Q2.1 Q3.1 Q4.1

0

0.5

1

1.5

2

-20% -10% 0% 10% 20%

N
or

m
al

iz
ed

 L
at

en
cy

Error on Estimated Selectivity

(a) Available CPU utilization of
6.25% (1 out of 16 cores)

0

0.5

1

1.5

2

-20% -10% 0% 10% 20%

N
or

m
al

iz
ed

 L
at

en
cy

Error on Estimated Selectivity

(b) Available CPU utilization of
100% (16 out of 16 cores)

Fig. 19: Latency comparison with varying errors to estimated
selectivities and available CPU utilizations.

GPU Host CPU Host-to-GPU Decompression GPU-to-Host

0.0

0.5

1.0

H
et

Ex
ch

an
ge

H
et

Ex
ch

an
ge

+n
vC

O
M

P

Fa
Sc

al
SQ

L

H
et

Ex
ch

an
ge

H
et

Ex
ch

an
ge

+n
vC

O
M

P

Fa
Sc

al
SQ

L

H
et

Ex
ch

an
ge

H
et

Ex
ch

an
ge

+n
vC

O
M

P

Fa
Sc

al
SQ

L

H
et

Ex
ch

an
ge

H
et

Ex
ch

an
ge

+n
vC

O
M

P

Fa
Sc

al
SQ

L

Q1.1 Q2.1 Q3.1 Q4.1

La
te

nc
y

[s
ec

]
SSB Query / SQL Query Engine

Fig. 20: SSB query execution latency comparison of HetEx-
change, HetExchange with nvCOMP, and FaScalSQL

to their JIT compilation process incurred only 1ms to 2ms
extra in code generation, representing negligible overhead
(under 10% of pre-execution time), which we expect to remain
insignificant across diverse workloads.

B. Impact of Data Compression

While we focus on reducing data movement for in-memory
columnar storage systems [10], [38], [63], [102], data com-
pression [2], [79], [99] is an alternative approach, especially
used for storage-backed systems [6], [106]. To evaluate the
impact of compression, we conduct an additional experiment
comparing FaScalSQL against a streaming HetExchange, aug-
mented with NVIDIA’s high-performance nvCOMP compres-
sion library [85]. While nvCOMP reduces transfer latency by
46% on average (Fig. 20), FaScalSQL achieves a geometric
mean speedup of 1.42× over HetExchange+nvCOMP. It shows
that compression itself is insufficient to reach 39× reduction
of FaScalSQL and suffers from decompress overhead.

C. Limitations

FaScalSQL is designed for out-of-memory tables residing
in host memory within a single GPU environment. While this
focus enables deep optimization within our target domain, it
introduces a few inherent limitations as follows.

First, single-GPU systems are limited by a single GPU’s
memory capacity and PCIe bottleneck, which become more
pronounced as query complexity increases. While we believe
substantial optimization opportunities remain in single-GPU
environments, the hardware constraints can limit FaScalSQL’s
applicability to highly large-scale analytics scenarios demand-
ing multi-node processing and resources.

Second, FaScalSQL’s key ideas, particularly ODZC, are
optimized for direct GPU access to host memory via PCIe
bus. This sub-cache-line granularity data fetching is limited to
data which is entirely loaded in the host memory. For storage-
resident tables on SSDs or traditional disks, GPUs cannot
perform the fine-grained, on-demand access that makes ODZC
effective, as storage I/O operates at coarser granularities (typ-
ically 4KB pages) and involves higher latencies that would
negate the benefits of our sparsity-aware access patterns.

Third, FaScalSQL targets read-intensive analytical queries,
and thus the primary challenge lies in efficiently filtering and
processing large data. While FaScalSQL is compatible with
dataset updates using its on-demand data fetching, it does not
fully address the complexities of OLTP or HTAP scenarios
that would require additional synchronization mechanisms.

D. Future Work

Scaling Out to Custom Accelerators and Multiple GPUs.
Using multiple GPUs is a plausible scale-out solution for
processing large tables by using the aggregated GPU memory
capacity [89], [114], [124], [129]. The key ideas of FaScalSQL
can also be effective in multi-GPU environments, as they
are not limited to single-GPU environments. Our key ideas
about matching data access patterns to query selectivity can
be adapted to FPGAs [22], [64], [67], [76], [112] and custom
ASICs [7], [118], as they face the same challenges of limited
on-chip memory and expensive data movement via PCIe bus.
Extending to Storage-Resident Tables. A promising direc-
tion involves exploiting near-storage processing capabilities
that perform AFP-like filtering and operations closer to the
tables stored in storage devices. In addition, extending our
lightweight indexing approach beyond bloom filters (e.g., B-
trees [97], compressed indexes) could enable more sophisti-
cated predicate evaluation at the storage level.
Beyond Analytical SQL Queries. As FaScalSQL caches up-
to-date input column values from host to GPU memory upon
each SQL query execution, we expect FaScalSQL can be
seamlessly integrated with CPU-based transactional databases.
Future work could explore versioned on-demand access that
allows analytical queries to access consistent snapshots while
transactions proceed, and adaptive CPU-GPU workload distri-
bution that shifts between transactional CPU processing and
analytical GPU processing based on workload characteristics.

VII. RELATED WORK

GPU-Initiated Host-to-GPU Data Transfer. The concept of
allowing GPUs to directly initiate the data transfer from host
memory, often leveraging mechanisms (i.e., zero-copy and
UVM), has been explored to mitigate the host-to-GPU inter-
connect bottleneck. Raza et al. [92], for instance, demonstrated
the potential of GPU-initiated lazy transfers to reduce data
movement, particularly for selective queries, by allowing GPU
kernels to pull necessary data on demand. Such techniques
have also been utilized in various domains like deep learn-
ing [46] and large-scale graph processing [41], [74], [111].
Building upon these pioneering efforts which established the

viability of GPU-initiated data transfer, FaScalSQL introduces
a new on-demand CPU-GPU co-processing engine specifically
designed to maximize its effectiveness for the dynamic filter-
ing nature of analytical SQL query processing.
Predicate Pushdown and Sideways Information Passing.
Predicate pushdown and sideways information passing are
well-established principles for reducing data movement in
various domains [6], [30], [44], [56], [62], [100], [113],
[120], [122], [128]. FaScalSQL’s novelty lies in adapting these
principles into an asynchronous, morsel-based pipeline, which
breaks the CPU-GPU dependency stalls that would otherwise
cripple a naive co-processing implementation.
GPU-Accelerated Query Execution. A large body of work
has focused on optimizing SQL query execution for data that
fully resides in GPU memory [15], [19], [24], [26], [34], [36],
[39], [40], [42], [70], [87], [88], [98], [110], [115], [125],
[130], [132]. Techniques include optimizing compute-intensive
operations like joins [48], [53], [69], [71], [89], [94], [95],
[101], [103], [105], [107] and using JIT compilation with
kernel fusion to mitigate thread divergence and materialization
overheads [25], [26], [36], [40], [87], [88], [98], [116], [117].
While optimizing execution on GPU-resident data, FaScalSQL
is complementary to and orthogonal to their key ideas.
Storage-Backed GPU Query Execution. Several engines op-
timize data transfer directly from storage. HippogriffDB [65],
HetCache [80], and GOLAP [9] focus on maximizing storage-
to-GPU PCIe bandwidth, for instance by bypassing host mem-
ory or using on-the-fly decompression. However, they still
rely on transferring coarse-grained data blocks. In contrast,
FaScalSQL logically reduces (AFP) and fine-grains (ODZC)
the data access itself, minimizing the volume of data that needs
to be staged from storage in the first place.

VIII. CONCLUSION

We proposed FaScalSQL, a new GPU-accelerated SQL
query engine that maximizes the GPU utilization when pro-
cessing analytical queries involving out-of-memory tables.
Using its three key ideas, namely On-Demand Zero-copy
Caching (ODZC), Asynchronous Filter Pushdown (AFP),
and a Contention-aware Query Optimizer (CQO), FaScalSQL
aligns query processing with the dynamic progressive filtering
of analytical queries, and exploits both GPU-initiated data
transfer and CPU-GPU co-processing capability. Our evalu-
ation using SSB and TPC-H queries shows that FaScalSQL
outperforms the existing GPU-accelerated engines, even under
host CPU-side contention and limited PCIe bandwidth.

ACKNOWLEDGMENT

This work was partly supported by the National Research
Foundation of Korea (NRF) grant (RS-2025-00513906) and
the Institute of Information & communications Technology
Planning & Evaluation (IITP) grants (RS-2020-II201361,
RS-2024-00395134, RS-2025-02217106, RS-2025-02304554)
funded by the Korea government (MSIT). Youngsok Kim is
the corresponding author of this paper.

AI-GENERATED CONTENT ACKNOWLEDGEMENT

In this paper, ChatGPT was employed only for language
polishing and grammar checks. All core research ideas, de-
signs, implementation, experimental analyses, and conclusions
were entirely conceived and developed by the authors.

REFERENCES

[1] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. Column-
stores vs. row-stores: how different are they really? In Proc. 2008
ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2008.

[2] Azim Afroozeh, Lotte Felius, and Peter Boncz. Accelerating GPU Data
Processing using FastLanes Compression. In Proc. 20th International
Workshop on Data Management on New Hardware (DaMoN), 2024.

[3] Byungmin Ahn, Jaehun Jang, Hanbyeul Na, Mankeun Seo, Hongrak
Son, and Yong Ho Song. AI Accelerator Embedded Computational
Storage for Large-Scale DNN Models. In 2022 IEEE 4th International
Conference on Artificial Intelligence Circuits and Systems (AICAS),
2022.

[4] Jeongseob Ahn, Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh.
Accelerating critical OS services in virtualized systems with flexible
micro-sliced cores. In Proc. Thirteenth EuroSys Conference (EuroSys),
2018.

[5] AMD. AMD RYZEN 9 3950X, 2019. https://www.amd.com/en/
product/8486.

[6] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin,
Ali Ghodsi, et al. Spark sql: Relational data processing in spark. In
Proc. 2015 ACM SIGMOD international conference on management
of data (SIGMOD), 2015.

[7] Cagri Balkesen, Nitin Kunal, Georgios Giannikis, Pit Fender, Seema
Sundara, Felix Schmidt, Jarod Wen, Sandeep Agrawal, Arun Raghavan,
Venkatanathan Varadarajan, et al. Rapid: In-memory analytical query
processing engine with extreme performance per watt. In Proc. 2018
International Conference on Management of Data (SIGMOD), 2018.

[8] Çağrı Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu.
Main-memory hash joins on modern processor architectures. IEEE
Transactions on Knowledge and Data Engineering, 27, 2014.

[9] Nils Boeschen, Tobias Ziegler, and Carsten Binnig. GOLAP: A GPU-
in-Data-Path Architecture for High-Speed OLAP. Proc. ACM on
Management of Data, 2, 2024.

[10] Peter A Boncz, Martin L Kersten, and Stefan Manegold. Breaking the
memory wall in MonetDB. Communications of the ACM, 51, 2008.

[11] Sebastian Breß. The design and implementation of CoGaDB: A
column-oriented GPU-accelerated DBMS. Datenbank-Spektrum, 14,
2014.

[12] Sebastian Breß, Felix Beier, Hannes Rauhe, Kai-Uwe Sattler, Eike
Schallehn, and Gunter Saake. Efficient co-processor utilization in
database query processing. Information Systems, 38, 2013.

[13] Sebastian Breß, Henning Funke, and Jens Teubner. Robust query
processing in co-processor-accelerated databases. In Proc. 2016 In-
ternational Conference on Management of Data (SIGMOD), 2016.

[14] Sebastian Breß, Bastian Köcher, Max Heimel, Volker Markl, Michael
Saecker, and Gunter Saake. Ocelot/hype: Optimized data processing on
heterogeneous hardware. Proc. VLDB Endowment (PVLDB), 7, 2014.

[15] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon
Kim. GPU Database Systems Characterization and Optimization. Proc.
VLDB Endowment (PVLDB), 17, 2023.

[16] Donald D Chamberlin and Raymond F Boyce. SEQUEL: A structured
English query language. In Proc. 1974 ACM SIGFIDET workshop on
Data description, access and control, 1974.

[17] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and
Anastasia Ailamaki. HetExchange: encapsulating heterogeneous CPU-
GPU parallelism in JIT compiled engines. Proc. VLDB Endowment
(PVLDB), 12, 2019.

[18] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino,
Adam Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa
Licciardello, Kristina Martsenko, et al. Enzian: an open, general,
CPU/FPGA platform for systems software research. In Proc. 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2022.

[19] Yangshen Deng, Shiwen Chen, Zhaoyang Hong, and Bo Tang. How
Does Software Prefetching Work on GPU Query Processing? In Proc.
20th International Workshop on Data Management on New Hardware,
2024.

[20] DuckDB. Execution Format, 2025. https://duckdb.org/docs/internals/
vector.html.

[21] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek
Narasayya, and Surajit Chaudhuri. Selectivity estimation for range
predicates using lightweight models. Proc. VLDB Endowment
(PVLDB), 12, 2019.

[22] Jian Fang, Yvo TB Mulder, Jan Hidders, Jinho Lee, and H Peter
Hofstee. In-memory database acceleration on FPGAs: a survey. The
VLDB Journal (VLDBJ), 29, 2020.

[23] Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K Govindaraju,
Qiong Luo, and Pedro V Sander. GPUQP: query co-processing using
graphics processors. In Proc. 2007 ACM SIGMOD international
conference on Management of data, 2007.

[24] Sofoklis Floratos, Mengbai Xiao, Hao Wang, Chengxin Guo, Yuan
Yuan, Rubao Lee, and Xiaodong Zhang. NestGPU: Nested query
processing on GPU. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE), 2021.

[25] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens
Teubner. Pipelined query processing in coprocessor environments. In
Proc. 2018 ACM SIGMOD International Conference on Management
of Data (SIGMOD), 2018.

[26] Henning Funke and Jens Teubner. Data-parallel query processing on
non-uniform data. Proc. VLDB Endowment (PVLDB), 13, 2020.

[27] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. Interplay
between hardware prefetcher and page eviction policy in cpu-gpu
unified virtual memory. In Proc. 46th International Symposium on
Computer Architecture (ISCA), 2019.

[28] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring,
Srikanth Sundaresan, and Sanjay Rao. A microscopic view of bursts,
buffer contention, and loss in data centers. In Proc. 22nd ACM Internet
Measurement Conference (IMC), 2022.

[29] Chris Gregg, Jeff Brantley, and Kim Hazelwood. Contention-aware
scheduling of parallel code for heterogeneous systems. In 2nd USENIX
workshop on hot topics in parallelism, HotPar, Berkeley, CA, 2010.

[30] Tim Gubner, Diego Tomé, Harald Lang, and Peter Boncz. Fluid co-
processing: Gpu bloom-filters for cpu joins. In Proc. 15th International
Workshop on Data Management on New Hardware (DaMoN), 2019.

[31] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei
Tan, Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, et al. Car-
dinality estimation in DBMS: A comprehensive benchmark evaluation.
Proc. VLDB Endowment (PVLDB), 2021.

[32] Hazar Harmouch and Felix Naumann. Cardinality estimation: An
experimental survey. Proc. VLDB Endowment (PVLDB), 11, 2017.

[33] Mark Harris. Unified Memory for CUDA Beginners, 2017. https:
//developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[34] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju,
Qiong Luo, and Pedro V. Sander. Relational Query Co-Processing on
Graphics Processors. ACM Transactions on Database Systems, 2009.

[35] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju,
Qiong Luo, and Pedro V. Sander. Relational Joins on Graphics
Processors. In Proc. 2008 ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2008.

[36] Dong He, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla
Saur, Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodrı́guez,
Konstantinos Karanasos, and Matteo Interlandi. Query Processing on
Tensor Computation Runtimes. Proc. VLDB Endowment (PVLDB),
15(11), 2022.

[37] HEAVY.AI. HeavyDB, 2022. https://www.heavy.ai/product/heavydb.
[38] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and

Volker Markl. Hardware-oblivious parallelism for in-memory column-
stores. Proc. VLDB Endowment (PVLDB), 6, 2013.

[39] Henneberg, Justus and Schuhknecht, Felix. Rtindex: Exploiting
hardware-accelerated gpu raytracing for database indexing. 16, 2023.

[40] Kijae Hong, Kyoungmin Kim, Young-Koo Lee, Yang-Sae Moon,
Sourav S Bhowmick, and Wook-Shin Han. Themis: A GPU-
accelerated Relational Query Execution Engine. Proc. VLDB Endow-
ment (PVLDB), 18(2), 2025.

[41] Lin Hu, Lei Zou, and M Tamer Özsu. GAMMA: A Graph Pattern
Mining Framework for Large Graphs on GPU. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE), 2023.

https://www.amd.com/en/product/8486
https://www.amd.com/en/product/8486
https://duckdb.org/docs/internals/vector.html
https://duckdb.org/docs/internals/vector.html
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://www.heavy.ai/product/heavydb

[42] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. TCUDB: Acceler-
ating Database with Tensor Processors. In Proc. 2022 International
Conference on Management of Data (SIGMOD), 2022.

[43] Changho Hwang, KyoungSoo Park, Ran Shu, Xinyuan Qu, Peng
Cheng, and Yongqiang Xiong. ARK: GPU-driven code execution
for distributed deep learning. In Proc. 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2023.

[44] Zachary G Ives and Nicholas E Taylor. Sideways information passing
for push-style query processing. In Proc. 2008 IEEE 24th International
Conference on Data Engineering (ICDE), 2008.

[45] Akanksha Jain, Hannah Lin, Carlos Villavieja, Baris Kasikci, Chris
Kennelly, Milad Hashemi, and Parthasarathy Ranganathan. Limoncello:
Prefetchers for scale. In Proc. 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2024.

[46] Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn. Fast and efficient
model serving using multi-gpus with direct-host-access. In Proc.
Eighteenth European Conference on Computer Systems (EuroSys),
2023.

[47] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. Adaptive work
placement for query processing on heterogeneous computing resources.
Proc. VLDB Endowment (PVLDB), 2017.

[48] Tomas Karnagel, René Müller, and Guy M Lohman. Optimizing GPU-
accelerated Group-By and Aggregation. ADMS@ VLDB, 8, 2015.

[49] Gwangsun Kim, Changhyun Kim, Jiyun Jeong, Mike Parker, and
John Kim. Contention-based congestion management in large-scale
networks. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

[50] Kinetica. Kinetica - The Real-Time Database, 2025. https://www.
kinetica.com/.

[51] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez,
Alexander L Wolf, Paolo Costa, and Peter Pietzuch. Saber: Window-
based hybrid stream processing for heterogeneous architectures. In
Proc. 2016 International Conference on Management of Data (SIG-
MOD), 2016.

[52] Alexander Krolik, Clark Verbrugge, and Laurie Hendren. rndn: Fast
query compilation for nvidia gpus. ACM Transactions on Architecture
and Code Optimization, 20, 2023.

[53] Artem Kroviakov, Petr Kurapov, Christoph Anneser, and Jana Giceva.
Heterogeneous intra-pipeline device-parallel aggregations. In Proc.
20th International Workshop on Data Management on New Hardware,
2024.

[54] Zhuohang Lai, Xibo Sun, Qiong Luo, and Xiaolong Xie. Accelerating
multi-way joins on the GPU. The VLDB Journal (VLDBJ), 31, 2022.

[55] Hai Lan, Zhifeng Bao, and Yuwei Peng. A survey on advancing the
dbms query optimizer: Cardinality estimation, cost model, and plan
enumeration. Data Science and Engineering, 6, 2021.

[56] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoor-
thy, Xiaodong Zhao, and Yang Seok Ki. SmartSSD: FPGA accelerated
near-storage data analytics on SSD. IEEE Computer architecture
letters, 19, 2020.

[57] Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng,
Dongyang Li, and Xiaodong Zhang. The art of balance: a RateupDB™
experience of building a CPU/GPU hybrid database product. Proc.
VLDB Endowment (PVLDB), 14, 2021.

[58] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy,
Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep
Dubey. Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU. In Proc. 37th International
Symposium on Computer Architecture (ISCA), 2010.

[59] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann.
Morsel-driven parallelism: a NUMA-aware query evaluation frame-
work for the many-core age. In Proc. 2014 ACM SIGMOD inter-
national conference on Management of data (SIGMOD), 2014.

[60] Feifei Li. Cloud-native database systems at Alibaba: Opportunities and
challenges. Proc. VLDB Endowment (PVLDB), 12, 2019.

[61] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and
Steven Swanson. HippogriffDB: Balancing I/O and GPU Bandwidth
in Big Data Analytics. Proc. VLDB Endowment (PVLDB), 9, 2016.

[62] Yinan Li, Jianan Lu, and Badrish Chandramouli. Selection Pushdown
in Column Stores using Bit Manipulation Instructions. Proc. ACM on
Management of Data (PACMMOD), 1, 2023.

[63] Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes.
Data formats in analytical DBMSs: performance trade-offs and future
directions. The VLDB Journal, 34, 2025.

[64] Ke Liu, Haonan Tong, Zhongxiang Sun, Zhixin Ren, Guangkui Huang,
Hongyin Zhu, Luyang Liu, Qunyang Lin, and Chuang Zhang. Inte-
grating FPGA-based hardware acceleration with relational databases.
Parallel Computing, 119, 2024.

[65] Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin, and
Steven Swanson. Hippogriff: Efficiently moving data in heterogeneous
computing systems. In 2016 IEEE 34th International Conference on
Computer Design (ICCD), 2016.

[66] Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang,
and Haibo Chen. CPS: A Cooperative Para-virtualized Scheduling
Framework for Manycore Machines. In Proc. 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2023.

[67] Alec Lu, Jahanvi Narendra Agrawal, and Zhenman Fang. SQL2FPGA:
Automated Acceleration of SQL Query Processing on Modern CPU-
FPGA Platforms. ACM Transactions on Reconfigurable Technology
and Systems, 17, 2024.

[68] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and
Volker Markl. Pump up the volume: Processing large data on GPUs
with fast interconnects. In Proc. 2020 International Conference on
Management of Data (SIGMOD), 2020.

[69] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and
Volker Markl. Triton join: efficiently scaling to a large join state on
GPUs with fast interconnects. In Proc. 2022 International Conference
on Management of Data (SIGMOD), 2022.

[70] Yangming Lv, Kai Zhang, Ziming Wang, Xiaodong Zhang, Rubao Lee,
Zhenying He, Yinan Jing, and X Sean Wang. RTScan: Efficient Scan
with Ray Tracing Cores. Proc. VLDB Endowment (PVLDB), 17, 2024.

[71] Vasilis Mageirakos, Riccardo Mancini, Srinivas Karthik, Bikash Chan-
dra, and Anastasia Ailamaki. Efficient GPU-accelerated Join Opti-
mization for Complex Queries. In Proc. 2022 IEEE 38th International
Conference on Data Engineering (ICDE), 2022.

[72] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan
Delorey, Slava Min, et al. Dremel: A decade of interactive SQL analysis
at web scale. Proc. VLDB Endowment (PVLDB), 13, 2020.

[73] META. META Data Centers, 2022. https://datacenters.fb.com/.
[74] Seung Won Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun

Xiong, Eiman Ebrahimi, and Wen mei Hwu. EMOGI: Efficient
Memory-access for Out-of-memory Graph-traversal in GPUs. Proc.
VLDB Endowment (PVLDB) (PVLDB), 14(2), 2020.

[75] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun
Xiong, Eiman Ebrahimi, Deming Chen, and Wen-mei Hwu. Large
graph convolutional network training with gpu-oriented data commu-
nication architecture. Proc. VLDB Endowment (PVLDB), 2021.

[76] Mehdi Moghaddamfar, Christian Färber, Wolfgang Lehner, Norman
May, and Akash Kumar. Resource-efficient database query processing
on FPGAs. In Proc. 17th International Workshop on Data Management
on New Hardware (DaMoN), 2021.

[77] Vivek Narasayya and Surajit Chaudhuri. Multi-tenant cloud data
services: State-of-the-art, challenges and opportunities. In Proc. 2022
International Conference on Management of Data (SIGMOD), 2022.

[78] Thomas Neumann. Efficiently compiling efficient query plans for
modern hardware. Proc. VLDB Endowment (PVLDB), 4, 2011.

[79] Hamish Nicholson, Konstantinos Chasialis, Antonio Boffa, and Anasta-
sia Ailamaki. The Effectiveness of Compression for GPU-Accelerated
Queries on Out-of-Memory Datasets. 2025.

[80] Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anasta-
sia Ailamaki. HetCache: Synergising NVMe Storage and GPU-
acceleration for Memory-Efficient Analytics. In Proc. 2023 Conference
on Innovative Data Systems Research (CIDR), 2023.

[81] John Nickolls and William J. Dally. The GPU Computing Era. IEEE
Micro, 30, 2010.

[82] NVIDIA. CUDA C++ Best Practices Guide, 2014. https://docs.nvidia.
com/cuda/cuda-c-best-practices-guide/#zero-copy.

[83] NVIDIA. NVIDIA TITAN RTX Datasheet, 2019. https:
//www.nvidia.com/content/dam/en-zz/Solutions/titan/documents/
titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf.

[84] NVIDIA. NVIDIA Ampere GA102 GPU Archi-
tecture, 2021. https://www.nvidia.com/content/PDF/
nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf.

[85] NVIDIA. NVIDIA nvCOMP, 2024. https://github.com/NVIDIA/
nvcomp.

https://www.kinetica.com/
https://www.kinetica.com/
https://datacenters.fb.com/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#zero-copy
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#zero-copy
https://www.nvidia.com/content/dam/en-zz/Solutions/titan/documents/titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/titan/documents/titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/titan/documents/titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://github.com/NVIDIA/nvcomp
https://github.com/NVIDIA/nvcomp

[86] Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star Schema Benchmark
– Revision 3, 2009. https://www.cs.umb.edu/∼poneil/StarSchemaB.pdf.

[87] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau.
Improving execution efficiency of just-in-time compilation based query
processing on gpus. Proc. VLDB Endowment (PVLDB), 14, 2020.

[88] Johns Paul, Jiong He, and Bingsheng He. GPL: A GPU-based pipelined
query processing engine. In Proc. 2016 ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2016.

[89] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. MG-
Join: A scalable join for massively parallel multi-GPU architectures.
In Proc. 2021 International Conference on Management of Data
(SIGMOD), 2021.

[90] Ben Perach, Ronny Ronen, and Shahar Kvatinsky. Accelerating Rela-
tional Database Analytical Processing with Bulk-Bitwise Processing-
in-Memory. In 2023 21st IEEE Interregional NEWCAS Conference
(NEWCAS). IEEE, 2023.

[91] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. Re-
thinking SIMD vectorization for in-memory databases. In Proc. 2015
ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2015.

[92] Syed Mohammad Aunn Raza, Periklis Chrysogelos, Panagiotis Sioulas,
Vladimir Indjic, Angelos Christos Anadiotis, and Anastasia Ailamaki.
GPU-accelerated data management under the test of time. In Online
Proc. 10th Conference on Innovative Data Systems Research (CIDR),
2020.

[93] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. Query process-
ing on heterogeneous CPU/GPU systems. ACM Computing Surveys
(CSUR), 55, 2022.

[94] Viktor Rosenfeld, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and
Volker Markl. Performance analysis and automatic tuning of hash
aggregation on GPUs. In Proc. 15th International Workshop on Data
Management on New Hardware (DaMoN), 2019.

[95] Ran Rui and Yi-Cheng Tu. Fast equi-join algorithms on gpus:
Design and implementation. In Proc. 29th international conference
on scientific and statistical database management, 2017.

[96] Henry N Schuh, Arvind Krishnamurthy, David Culler, Henry M Levy,
Luigi Rizzo, Samira Khan, and Brent E Stephens. CC-NIC: a Cache-
Coherent Interface to the NIC. In Proc. 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2024.

[97] Amirhesam Shahvarani and Hans-Arno Jacobsen. A hybrid B+-
tree as solution for in-memory indexing on CPU-GPU heterogeneous
computing platforms. In Proc. 2016 International Conference on
Management of Data (SIGMOD), 2016.

[98] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fun-
damental performance characteristics of GPUs and CPUs for database
analytics. In Proc. 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2020.

[99] Anil Shanbhag, Bobbi W Yogatama, Xiangyao Yu, and Samuel Mad-
den. Tile-based lightweight integer compression in GPU. In Proc.
2022 ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2022.

[100] Lakshmikant Shrinivas, Sreenath Bodagala, Ramakrishna Varadarajan,
Ariel Cary, Vivek Bharathan, and Chuck Bear. Materialization strate-
gies in the vertica analytic database: Lessons learned. In 2013 IEEE
29th International Conference on Data Engineering (ICDE), 2013.

[101] Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja
Appuswamy, and Anastasia Ailamaki. Hardware-conscious hash-joins
on gpus. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), 2019.

[102] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, et al. C-store: a column-oriented DBMS.
In Making Databases Work: the Pragmatic Wisdom of Michael Stone-
braker. 2018.

[103] Wenbo Sun, Asterios Katsifodimos, and Rihan Hai. An empirical
performance comparison between matrix multiplication join and hash
join on GPUs. In 2023 IEEE 39th International Conference on Data
Engineering Workshops (ICDEW), 2023.

[104] Yutian Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha
Basmanova, Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong,
Arun Thirupathi, et al. Presto: A Decade of SQL Analytics at Meta.
Proc. ACM on Management of Data, 1, 2023.

[105] Lasse Thostrup, Gloria Doci, Nils Boeschen, Manisha Luthra, and
Carsten Binnig. Distributed GPU joins on fast RDMA-capable net-
works. Proc. ACM on Management of Data, 1, 2023.

[106] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive: a warehousing solution over a map-reduce framework.
Proc. VLDB Endowment (PVLDB), 2, 2009.

[107] Diego G Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg, and
Peter A Boncz. Optimizing Group-By and Aggregation using GPU-
CPU Co-Processing. In ADMS@ VLDB, 2018.

[108] Transaction Processing Performance Council (TPC). TPC-H Bench-
mark, 2025. https://www.tpc.org/tpch/.

[109] Tobias Vinçon, Christian Knödler, Leonardo Solis-Vasquez, Arthur
Bernhardt, Sajjad Tamimi, Lukas Weber, Florian Stock, Andreas Koch,
and Ilia Petrov. Near-data processing in database systems on native
computational storage under HTAP workloads. Proc. VLDB Endow-
ment (PVLDB), 15, 2022.

[110] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning
Ding, and Xiaodong Zhang. Concurrent analytical query processing
with GPUs. Proc. VLDB Endowment (PVLDB), 7, 2014.

[111] Qiange Wang, Xin Ai, Yanfeng Zhang, Jing Chen, and Ge Yu.
HyTGraph: GPU-Accelerated Graph Processing with Hybrid Transfer
Management. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE), 2023.

[112] Satoru Watanabe, Kazuhisa Fujimoto, Yuji Saeki, Yoshifumi Fujikawa,
and Hiroshi Yoshino. Column-oriented database acceleration using
FPGAs. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 2019.

[113] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex: An Intelligent
Storage Engine with Support for Advanced SQL Off-loading. Proc.
VLDB Endowment (PVLDB), 7, 2014.

[114] Bowen Wu, Wei Cui, Carlo Curino, Matteo Interlandi, and Rathijit
Sen. Terabyte-Scale Analytics in the Blink of an Eye. arXiv preprint
arXiv:2506.09226, 2025.

[115] Bowen Wu, Dimitrios Koutsoukos, and Gustavo Alonso. Efficiently
Processing Joins and Grouped Aggregations on GPUs. Proc. ACM on
Management of Data, 3, 2025.

[116] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yala-
manchili. Kernel weaver: Automatically fusing database primitives
for efficient gpu computation. In Proc. 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2012.

[117] Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar
Yalamanchili, and Srimat Chakradhar. Optimizing data warehousing
applications for GPUs using kernel fusion/fission. In 2012 IEEE
26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, 2012.

[118] Lisa Wu, Andrea Lottarini, Timothy K Paine, Martha A Kim, and Ken-
neth A Ross. Q100: the architecture and design of a database processing
unit. In Proc. 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2014.

[119] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou,
Greg Bronevetsky, and Saurabh Bagchi. Pythia: Improving datacenter
utilization via precise contention prediction for multiple co-located
workloads. In Proc. 19th International Middleware Conference (Mid-
dleware), 2018.

[120] Cong Yan, Yin Lin, and Yeye He. Predicate pushdown for data science
pipelines. Proc. ACM on Management of Data (PACMMOD), 1, 2023.

[121] Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao
Yu, Marco Serafini, Ashraf Aboulnaga, and Michael Stonebraker.
Flexpushdowndb: Hybrid pushdown and caching in a cloud DBMS.
Proc. VLDB Endowment (PVLDB), 14, 2021.

[122] Yifei Yang, Xiangyao Yu, Marco Serafini, Ashraf Aboulnaga, and
Michael Stonebraker. FlexpushdownDB: rethinking computation push-
down for cloud OLAP DBMSs. VLDB Journal (VLDBJ), 33, 2024.

[123] Sui Yi, Li Yuhe, and Wang Yu. Cloud computing architecture design
of database resource pool based on cloud computing. In 2018
International Conference on Information Systems and Computer Aided
Education (ICISCAE), 2018.

[124] Bobbi Yogatama, Weiwei Gong, and Xiangyao Yu. Scaling your
Hybrid CPU-GPU DBMS to Multiple GPUs. Proc. VLDB Endowment
(PVLDB), 17, 2024.

[125] Bobbi Yogatama, Brandon Miller, Yunsong Wang, Graham Markall,
Jacob Hemstad, Gregory Kimball, and Xiangyao Yu. Accelerating user-
defined aggregate functions (UDAF) with block-wide execution and JIT
compilation on GPUs. In Proc. 19th International Workshop on Data
Management on New Hardware, 2023.

https://www.cs.umb.edu/~poneil/StarSchemaB.pdf
https://www.tpc.org/tpch/

[126] Bobbi W Yogatama, Weiwei Gong, and Xiangyao Yu. Orchestrat-
ing data placement and query execution in heterogeneous CPU-GPU
DBMS. Proc. VLDB Endowment (PVLDB), 15, 2022.

[127] Tao Yu, Jie Qiu, Berthold Reinwald, Lei Zhi, Qirong Wang, and Ning
Wang. ntelligent database placement in cloud environment. In 2012
IEEE 19th International Conference on Web Services (ICWS), 2012.

[128] Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem,
Marco Serafini, Ashraf Aboulnaga, and Michael Stonebraker. Push-
downDB: Accelerating a DBMS using S3 computation. In 2020 IEEE
36th International Conference on Data Engineering (ICDE), 2020.

[129] Yichao Yuan, Advait Iyer, Lin Ma, and Nishil Talati. Vortex: Over-
coming Memory Capacity Limitations in GPU-Accelerated Large-Scale

Data Analytics. Proc. VLDB Endowment (PVLDB), 18(4), 2025.
[130] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. The Yin and Yang of

processing data warehousing queries on GPU devices. Proc. VLDB
Endowment (PVLDB), 6, 2013.

[131] Kai Zhang, Jiayu Hu, Bingsheng He, and Bei Hua. DIDO: Dynamic
pipelines for in-memory key-value stores on coupled CPU-GPU ar-
chitectures. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), 2017.

[132] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. OmniDB:
Towards portable and efficient query processing on parallel CPU/GPU
architectures. Proc. VLDB Endowment (PVLDB), 6, 2013.

	Introduction
	Background
	Characteristics of GPU-Based Pipeline-Driven Execution
	Processing Out-of-Memory Columns on a GPU

	Motivation
	Excessive Host-to-GPU Data Movement
	CPU-GPU Load Imbalance

	FaScalSQL
	Design Goals and Overview
	Aligning with the Dynamic Progressive Filtering Feature
	Opportunity: On-Demand Access to Host Memory
	Challenge: Invalid Assumptions on GPU Working Set Size
	Key Idea: On-Demand Zero-copy Caching (ODZC)

	Minimizing Excessive Host-to-GPU Data Movement
	Opportunity: CPU-Assisted Pre-Filtering
	Challenge: Intra-Pipeline Dependency
	Key Idea: Asynchronous Filter Pushdown (AFP)

	Ensuring Fast and Scalable CPU-GPU Co-Processing
	Opportunity: Fine-Grained Offloading Space
	Challenge: Host CPU-Side Contention
	Key Idea: Contention-aware Query Optimizer (CQO)

	Implementation
	Query Optimizer
	Execution Coordinator
	Query Executor

	Evaluation
	Experimental Setup
	Fast GPU-Accelerated Query Executions
	Large Reductions in the Data Movement
	Contention-Aware Query Processing
	CPU-GPU Load Balance
	Effectiveness of FaScalSQL's Key Ideas
	Sensitivity Studies
	PCIe Bus Bandwidth
	Bloom Filter Size
	Impact on Data Skew
	Impact of Selectivity Estimation Errors

	Discussions
	Overhead of Contention-Aware Query Optimizer (CQO)
	Impact of Data Compression
	Limitations
	Future Work

	Related Work
	Conclusion
	References

